Amplification and analysis of cDNA generated from a single cell by 5'-RACE: application to isolation of antibody heavy and light chain variable gene sequences from single B cells.
نویسندگان
چکیده
The technique of 5'-rapid amplification of cDNA ends (5'-RACE) is widely used to amplify unknown sequences at the 5' end of a messenger RNA (mRNA). However, conventional 5'-RACE is inappropriate for producing cDNAs from a single cell due to the small quantity of mRNA present in one cell. In this study, we report an improved 5'-RACE method that is suitable for generating cDNA from a single cell. In this method, the first-strand cDNA was directly synthesized from a single cell, and both the tailing reaction and second-strand cDNA synthesis were performed in the same tube without purifying the cDNA sample. Using this method, we were able to amplify the cDNA of the immunoglobulin (Ig) variable region gene from more than 50% of single B cells. The amplified cDNA fragment contained a full-length Ig variable region including a 5'-untranslated region, a leader sequence, and an initiation codon. This method may thus be applicable for a comprehensive analysis of the Ig variable genes of the lymphocyte repertoire in humans and animals, thereby contributing to the development of antibody-based therapeutics for infectious diseases.
منابع مشابه
Cloning and Expression of the Variable Regions of Anti-EGFR Monoclonal Antibody in E. coli for Production of a Single Chain Antibody
Background:Epidermal growth factor receptor (EGFR) overexpression is a characteristic of several malignancies and could be considered as an excellent target for designing specific inhibitors such as anti-EGFR monoclonal antibodies for cancer therapy. Drawbacks exerted by large sizes of full-length antibodies have lead to the development of single chain antibodies, which benefit from having smal...
متن کاملRetroviral Transduction of Fluonanobody and the Variable Domain of Camelid Heavy-Chain Antibodies to Chicken Embryonic Cells
Background: Single domain antibodies from camel heavy chain antibodies (VHH or nanobody), are advantages due to higher solubility, stability, high homology with human antibody, lower immunogenicity and low molecular weight. These criteria make them candidates for production of engineered antibody fragments particularly in transgenic animals. Objective: To study the development of transgenic ch...
متن کاملIsolation of the Gene Coding for Movement Protein from Grapevine Fanleaf Virus
A pair of degenerate primers, GMPF1 and GMPR1, was designed on the basis of alignment of previously reported Grapevine fanleaf virus (GFLV) movement protein (MP) nucleotide sequences from Iran and other parts of the world. cDNA was synthesized by the use of Oligo d(T)18 from total RNA extraction from each diseased grapevine leaf sample and subjected to polymerase chain reaction (PCR) with the d...
متن کاملتولید آنتیبادی پلیکلونال شتری علیه گیرنده 2 فاکتور رشد سلولهای آندوتلیال عروق و بررسی عملکرد آن
Abstract Background: In molecular approach, serum of camel contains a unique type of antibodies devoid of light chains since the light chain is missing, the heavy-chain antibodies should bind their antigen by one single domain, the variable domain of the heavy immunoglobulin chain. Vascular endothelial growth factor receptor-2 (VEGFR-2) is one of the important proteins in angiogenesis which...
متن کاملP-215: Discovery of A Novel APA Variant of A Human Potential Gene Based on Expressed Sequenced Tags Analysis
Background: Expressed sequence tags (ESTs) are sequences of cDNA fragments prepared from different tissue sources. There are over one million of these sequences in the publicly available database, and these sequences are believed to represent more than half of all human genes. The ESTs belong to different cDNA libraries, was prepared from one particular cell type, organ, or tumor. Therefore, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BioTechniques
دوره 40 4 شماره
صفحات -
تاریخ انتشار 2006